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The viscous damping of cnoidal waves progressing over a smooth horizontal 
bed is investigated. First approximations are derived for the attenuation of 
wave height with distance and for the friction coefficient at  the bed. Attenuation 
coefficients are larger than those predicted on the basis of shallow-water sinu- 
soidal wave theory and, unlike the case of sinusoidal waves, they are not inde- 
pendent of wave height. The limiting case of the solitary wave, considered pre- 
viously by Keulegan (1948), is also discussed. 

1. Introduction 
The viscous damping of progressive surface waves is a topic of widespread 

interest and practical importance. Biesel (1949) investigated the case of two- 
dimensional periodic sinusoidal waves in water of constant and finite dep trh and 
calculated the attenuation coefficient corresponding to an exponential decay of 
wave height. Hunt (1952) subsequently extended this theory to include the 
case of waves propagating in a channel of finite width over a gently sloping 
bed and derived a modified expression for the attenuation coefficient. Hunt 
(1964) later considered a higher approximation to the exponential decay of 
two-dimensional sinusoidal waves, such that the theory extended to the 
deep-water case in which energy dissipation occurs principally in the fluid 
interior. 

On the other hand, the damping of solitary waves was investigated earlier by 
Keulegan (1948), who found that the wave-height attenuation is not exponential 
but rather follows an inverse power law. The theories of Biesel(l949) and Hunt 
(1952, 1964), being based on sinusoidal wave theory, are valid in shallow water 
only for waves of very small height and in any case do not predict the solitary- 
wave limit. 

Since the shallow-water range is of particular interest, a theory of cnoidal- 
wave damping is clearly relevant and is the objective of the present paper. The 
method employed here, used by Hunt (1952) for sinusoidal waves, is based on 
equating the energy dissipation within the fluid to the spatial decrease in energy 
flux in the direction of wave propagation. Recently Isaacson (1976) has derived 
the velocity distribution within the bottom laminar boundary layer of cnoidal 
waves in the course of investigating the mass-transport velocity. A knowledge 
of this velocity distribution permits the calculation of energy dissipation within 
the boundary layer, thus enabling a theory of viscous damping to be developed 
for cnoidal waves. As expected, the two extreme cases of cnoidal-wave damping 
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correspond to sinusoidal-wave damping in shallow water (Biesel 1949) and to 
solitary-wave damping (Keulegan 1948). The bottom friction is of associated 
interest and is also calculated for cnoidal waves. 

2. Theoretical development 
The water is assumed incompressible and to have an uncontaminated free 

surface. The wave motion is assumed to be time periodic and two-dimensional and 
to propagate over a smooth horizontal bed. The attenuation, then, is considered 
to occur with distance in the direction of wave propagation as is generally the 
case in laboratory experiments. 

Although the wave characteristics vary in the direction of propagation, the 
wave period T and still water depth d are taken as invariant for a particular 
wave train. Results of cnoidal wave theory (Laitone 1960) are expressed as power 
series in the parameter H/h, where His the wave height and h the trough depth. 
However, since h itself is expected to vary with distance, we shall here prefer to 
use the alternative parameter E = H/d and the behaviour of E will then directly 
reflect that of H .  

Let x denote the co-ordinate in the direction of wave propagation with origin 
fixed relative to the bed, y the vertical co-ordinate measured upwards from the 
bed, U and u the horizontal velocity components in the fluid interior and within 
the bottom boundary layer respectively, and t time. Also let p denote the fluid 
density, v the kinematic fluid viscosity and p ( = pv) the dynamic fluid viscosity. 

The horizontal fluid velocity U based on Laitone's (1960) cnoidal theory is 
given in the co-ordinate system adopted here in terms of the Jacobian elliptic 
function en with argument q = K ( K )  n-l(kx - wt) and modulus K as 

Here y is the ratio E(lc)/K(K), E ( K )  is the complete elliptic integral of the second 
kind, K ( K )  is the complete elliptic integral of the first kind and K ' ~  = 1 - 13. 
Also k is the wavenumber (=  2n/L), where L is the wavelength, w the wave 
angular frequency ( = 2n/T) and g the acceleration due to gravity. It is convenient 
to follow the approach of Isaacson (1976) and represent this velocity as a complex 
Fourier series : 

with A', = A;, A; = 0. 

Here 8 = kx - wt. It was indicated how A; may be determined numerically for 
all n for any value of the modulus K. 

Isaacson (1976) calculated the velocity within the laminar boundary layer a t  
the bed to a first approximation: 
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where S = (2v/o)*, the boundary-layer thickness, and 

a, = (1-i)TZk 

The rate of energy dissipation in an incompressible fluid may be expressed in 
terms of the Rayleigh dissipation function and, assuming the boundary layer to 
be thin (relative to both h and L), the predominant contribution to the dissi- 
pation rate derives from the velocity gradient a@y within the boundary layer. 
As a boundary-layer approximation, then, the average rate of energy dissipa- 
tion per unit length in the x direction (and per unit width) is 

The above expression may be evaluated by substituting for u from (2.3). Since 
d is given by cnoidal theory as h( 1 + O[e]), we may replace h by d to the present 
order of approximation in order to work with the parameter e = H/d as men- 
tioned earlier. Furthermore, A; depends only on the modulus K and we eventually 
have 

where 
m 

n= 1 
f,(~) = 2 x n*Az. 

The rate of energy transfer per unit width across a plane of constant x may be 
written in terms of the wave speed c ( = o / k )  as 

where 7 is the free-surface elevation above the trough level y = h. The above 
equation refers to the irrotational motion of the fluid interior and derives from 
the alternative expression generally used for finite amplitude waves (see, for 
example, Longuet-Higgins 1975). Substituting for U from (2.1), taking the time 
average, and replacing h by d for the same reasons as mentioned earlier, we obtain 
for the average rate of energy transfer 

aE/at = pCgd2s2f,(K) + O[e3], (2.9) 

(2.10) 
1 co 

f 2 ( K )  = 3 x where = - {27(2 - K 2 )  - 3y2- d2). 
n=l 3K4 

By the principle of energy conservation, the difference between the average 
rates a t  which energy crosses two planes a short distance apart is due to the 
dissipation between those planes. That is 

(2.11) 

Now c is given by cnoidal theory as (gh)* ( I  + O[e]) and also d and T are invariant 
with x. Thus substituting (2.6) and (2.9) into (2.11), omitting terms of order e3 
and rearranging gives 

ax ax 
(2.12) 
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FIUURE 1. Dependence of certain functions on the parameter A .  ---, 
limiting values as h + co. 

in which p = ~/2g)d46. (2.13) 

A consequence of taking T and d constant is that a unique relationship exists 
between E and K .  We may then consider the modulus K as a function of E for a 
particular wave train and thus in turn as B function of x. Therefore 

where 

(2.14) 

(2.15) 

(2.16) 

We shall find it convenient to use the parameter h = K ~ K ~ ( K )  rather than K 

itself since to the first approximation cnoidal theory gives 

d 3s 3 E  
gT2 -- 16/c2K2(~) = Ish’ 
-- (2.17) 

and thus A is directly proportional to 6 for a given train. The variation of f3  with 
h may be readily calculated and is given in figure 1 .  

The integration of (2.15) may be carried out numerically for any given value 
of dIgT2 to obtain ~ ( x ) ,  but some initial rearrangement is desirable since the 
integrand becomes very large for small E. Furthermore, from sinusoidal wave 
theory we expect the decay to be closely exponential and we therefore rearrange 
(2.15) and integrate to give 

(2.18) 
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FIGURE 2. Variation off&) and the integral I(h) used to calculate 
wave-height attenuation. 

where eo is the value of E at the origin x = 0 and 

Now since E is proportional to h for any given train we have 

J-; f4dE = s^ f4dh = I (h)  -I(ho), 
A, 

(2.19) 

(2.20) 

in which A, is the value of h corresponding to 8,. The variation of I with h has 
been calculated numerically and I ( A ) ,  together with f4(h),  is presented in figure 2. 
Writing h as €h,/e,, we finally have in place of (2.18) 

(2.21) 

This, then, expresses the profile e(x) in a general form as the variation of e/eo 
with /3x/d for any given value of A, ( = 3s,gT2/1 6 4 .  Profiles for the limiting case 
h,+O and for A, = 20 and A, = 50 are presented in figure 3. The limiting case 
h0+ 0 (corresponding to K, €+- 0 )  reduces to the exponential damping encoun- 
tered with sinusoidal waves. 

In  order to compare more precisely the present resuIts with the exponential 
decay involved in previous work, we define a dimensionless attenuation coefi- 
cient a as 

(2.22) 

In  the present case this is not independent of wave height and will therefore 
vary slowly with x. From (2.15), we have 

a = P f 3 ( K ) ,  (2.23) 
where f3(h) is given in figure 1. 
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FIGURE 3. Attenuation of wave height with distance in the direction of wave propagation 
indicated by e/eo as a function of bx/d. (a) h, = 0, (b) h, = 20, (c) h, = 50. 

The bottom friction is a feature of associated interest which has been measured 
experimentally by several authors and the calculation for cnoidal waves follows 
directly from (2.3). Following Eagleson (1962), we define a characteristic friction 
coefficient C, and wave Reynolds number Re a.s 

C, = m / $ p u ' i ,  Re = nF21wv, (2.24) 

where an overbar denotes a temporal mean, U is here the velocity a t  the outer 
edge of the boundary layer and T~ (=  p(8u/8y),=,) is the shear stress a t  the bed. 
We eventually find the relation between these to be 

C, = f5(K) Re-4, (2.25) 

in which (2.26) 

The variation of f5 with h has been computed and is included in figure 1. 

3. The limiting values of K 

By expressing the functions of K previously encountered as power series in ~ 2 ,  

the limiting values of these as K tends to zero may be determined. Thus, as K 

(and E )  approaches zero, we have for the attenuation coefficient from (2.23) 

a = p ,  (3.1) 

a result independent of wave height. The result given by Biesel(l949) for sinu- 
soidal waves reduces in shallow water to @S. From the definition of p ,  equation 
(2.13), we see that (3. I) duplicates the result corresponding to shallow-water 
sinusoidal wave theory, as expected. As K departs from the lower limit of zero, 
the attenuation coefficient u increases relative to the shallow-water sinusoidal- 
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wave prediction according to f 3 ( K ) .  Regarding the bottom friction, the limiting 
value of f5 as K + O  is 4(2/7~)4, which was previously obtained by Eagleson (1962, 
equation (38)) for sinusoidal waves. 

In  very shallow water as K approaches unity, k becomes very small, T and, 
therefore, S become very large, and it is more appropriate to express the attenua- 
tion coefficient a in terms of variables which remain finite as the solitary-wave 
case is approached. 

Rearrangement of (2.23) gives 

where (3.3) 

The variation of f6 with A is given in figure 1. 
When K(K)  is very large, K is approximately ~ /K(K) ,  and we have from (2.10) 

The limiting value of fi(K) may be obtained by referring to Keulegan’s (1948) 
derivation of the rate of total energy dissipation for the solitary wave [his equa- 
tion (42)]. The rate of energy dissipation over a wavelength for cnoidal waves is 
given by (2.6) multiplied by L, and comparing the limiting case of cnoidal waves 
as K ( K )  becomes very large with Keulegan’s (1948) expression, we obtain 

K*(K) fi(K) E Z%N/n, (3.5) 

where N is an integral which Keulegan (1948) estimated to have the value 0.316. 
From (3.4) and (3.5) we have finally for K+ 1 

f6 = 3*2*N/d N 9, (3.6) 

which corresponds to the expression obtained by Keulegan (1948). This is 
expected since his expression for energy dissipation has been used here and the 
arguments used in Q 2 may be rephrased in terms of total energy dissipation over 
a wave period (as Hunt (1952) has done for sinusoidal waves), in which case the 
solitary-wave limit will hold good. We note that the inverse power law for wave- 
height attenuation found by Keulegan (1948) now follows immediately from 
(2.22) and (3.2). 

The relation between the friction coefficient and Reynolds number for K 

approaching unity may be considered in a similar manner. Although the defini- 
tions of C, and Re adopted here are somewhat artificial for application to solitary 
waves, they may be written in terms of integrals over a wave period in order to 
avoid the use of temporal mean values which approach zero. The limit of f5 
corresponding to the solitary wave has been evaluated numerically by Keulegan’s 
(1948) approach and found to take the value 3.09. The limits of f5 and f6 as 
K 3 1 ( A  --f 00) are indicated in figure 1.  

It is pointed out that, although Hunt (1952) compared the shallow-water 
limit of his expression for a with Keulegan’s (1948) results for solitary-wave 
damping, the comparison was in fact made with the damping of a solitary rect- 
angular travelling wave of finite length. The attenuation coefficient [defined by 
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(2.22)] predicted on the basis of shallow-water sinusoidal wave theory is Sk8, 
which, for any given d, tends to zero as the solitary-wave limit is approached 
(k, kd -+ 0). This result is contrary to Keulegan’s (1948) result fe = 9, which does 
correspond to the limit of cnoidal waves. 

4. Discussion 
The present theory is based on only the first approximation to cnoidal waves, 

and may thus be expected to remain valid only for shallow-water waves, say 
with a wave depth parameter kd up to about 0.3. Previous experimental investi- 
gations involving the measurement of attenuation coefficients (e.g. Eagleson 
1962; Lukasik & Grosch 1963; Treloar & Brebner 1970) have for the most part 
covered a higher range of kd. Attenuation coefficients have usually been esti- 
mated by initially assuming an expoiiential decay of height, thus disregarding 
the variation of a with height itself, and furthermore the effects of surface tension, 
not considered in the present study, are generally appreciable. It follows that a 
comparison of the present theory with available experimental data is inappro- 
priate. Nevertheless, in the case of shallower waves, the present approach sug- 
gests a further contributory effect accounting for the large attenuation coefficients 
previously measured. For example, with kd = 0.25 and 6 = 0.2 the present theory 
predicts a to be almost 40 % larger than that given by sinusoidal wave theory. 

The result showing that C, varies as Re-4 for cnoidal waves is hardly surprising 
since this power law is merely a consequence of the boundary-layer approxima- 
tion and is independent of the particular flow beyond the boundary layer. 
Isaacson & Isaacson (1975, p. 108) have indicated that the laminar boundary- 
layer equations are dimensionally homogeneous in the extended set of reference 
dimensions M X Y Z T ,  where X ,  Y and 2 are the length scales in the three 
orthogonal directions x, y and z respectively, and consequently a dimensional 
analysis based on this set of dimensions directly yields the above power law. In 
the case of cnoidal waves, where the characteristic velocity variation outside the 
boundary layer depends on the modulus K, the proportionality constant is strictly 
a function of K and we therefore duplicate (2.25), in which of course the precise 
form offj(K) is not to be obtained by dimensional methods. 

Finally, we may note that the wave depth parameter kd is given by cnoidal 
theory as 

Comparing this equation with (2.17), we see that to the first approximation kd 
and therefore L remain constant for a given train. This is in spite of the first- 
order dependence of L on wave height, and the general assertion that L itself 
does vary in very shallow water. To the second approximation, of course, L is 
expected to vary with x. 

This study was carried out while the author held a National Research Council 
Postdoctoral Research Associate appointment at the Joint Tsunami Research 
Effort, Environmental Research Laboratories, NOAA, in Honolulu, Hawaii, 
and he is grateful to the National Research Council for its support. 
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